Post-Seismic Deformation from the 2009 Mw 6.3 Dachaidan Earthquake in the Northern Qaidam Basin Detected by Small Baseline Subset InSAR Technique

نویسندگان

  • Yang Liu
  • Caijun Xu
  • Yangmao Wen
  • Zhicai Li
چکیده

On 28 August 2009, one thrust-faulting Mw 6.3 earthquake struck the northern Qaidam basin, China. Due to the lack of ground observations in this remote region, this study presents high-precision and high spatio-temporal resolution post-seismic deformation series with a small baseline subset InSAR technique. At the temporal scale, this changes from fast to slow with time, with a maximum uplift up to 7.4 cm along the line of sight 334 days after the event. At the spatial scale, this is more obvious at the hanging wall than that at the footwall, and decreases from the middle to both sides at the hanging wall. We then propose a method to calculate the correlation coefficient between co-seismic and post-seismic deformation by normalizing them. The correlation coefficient is found to be 0.73, indicating a similar subsurface process occurring during both phases. The results indicate that afterslip may dominate the post-seismic deformation during 19-334 days after the event, which mainly occurs with the fault geometry and depth similar to those of the c-seismic rupturing, and partly extends to the shallower and deeper depths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Dependent Afterslip of the 2009 Mw 6.3 Dachaidan Earthquake (China) and Viscosity beneath the Qaidam Basin Inferred from Postseismic Deformation Observations

The 28 August 2009 Mw 6.3 Dachaidan (DCD) earthquake occurred at the Qaidam Basin’s northern side. To explain its postseismic deformation time series, the method of modeling them with a combination model of afterslip and viscoelastic relaxation is improved to simultaneously assess the time-dependent afterslip and the viscosity. The coseismic slip model in the layered model is first inverted, sh...

متن کامل

A New Perspective on Fault Geometry and Slip Distribution of the 2009 Dachaidan Mw 6.3 Earthquake from InSAR Observations

On 28 August 2009, the northern margin of the Qaidam basin in the Tibet Plateau was ruptured by an Mw 6.3 earthquake. This study utilizes the Envisat ASAR images from descending Track 319 and ascending Track 455 for capturing the coseismic deformation resulting from this event, indicating that the earthquake fault rupture does not reach to the earth's surface. We then propose a four-segmented f...

متن کامل

InSAR analysis of the 2008 Reno-Mogul earthquake swarm: Evidence for westward migration of Walker Lane style dextral faulting

[1] Analysis and modeling of InSAR data covering the 2008 Reno-Mogul M 4.7 earthquake swarm indicate that the main event was produced by slip on a previously unrecognized strike-slip fault in the Reno basin. Deformation of 0.5– 2.5 cm in radar line-of-sight was produced by the main event and post-seismic slip over an area of more than 150 km. This earthquake is one of the smallest magnitude eve...

متن کامل

Correction: Liu, Y. et al. Time-Dependent Afterslip of the 2009 Mw 6.3 Dachaidan Earthquake (China) and Viscosity beneath the Qaidam Basin Inferred from Postseismic Deformation Observations. Remote Sens. 2016, 8, 649

Yang Liu 1,2,3,4,*, Caijun Xu 1,2,3, Zhenhong Li 4, Yangmao Wen 1,2,3, Jiajun Chen 4 and Zhicai Li 5 1 School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China; [email protected] (C.X.); [email protected] (Y.W.) 2 Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan 430079, China 3 Collaborative Innovation Center for Geospatial Te...

متن کامل

Bam earthquake: Surface deformation mea- surement using radar interferometry

On the 26th December 2003 an earthquake with MW=6.5 shook a large area of the Kerman Province in Iran. The epicenter of the devastating earthquake was located near the city of Bam. This paper described the application of differential synthetic aperture radar interferometry (D-INSAR) and ENVISAT ASAR data to map the coseismic surface deformation caused by the Bam earthquake including the interfe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016